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In this document the Datagram Transport Layer Security (DTLS) protocol,  a  
modifcation of the Transmission Control Protocol (TCP) for unreliable transport  
protocols,  and  its  extensions  SCTP-aware  DTLS  and  Heartbeats  will  be  
introduced.  OpenSSL  has  currently  the  most  advanced  open  source  
implementation, which will be described including its API.

Datagram Transport Layer Security

The Transport Layer Security (TLS) protocol [1] is a widely deployed security 
solution for reliable transport protocols. Although it has been developed for any 
transport protocol which is reliable and maintains the order of the messages, 
these  requirements  are  only  met  without  limitations  by  the  Transmission 
Control Protocol (TCP). Securing the unreliable User Datagram Protocol (UDP) as 
well as the Stream Control Transmission Protocol (SCTP) [2] is not possible or 
only very limited. Therefore, TLS was modifed to allow unreliable and out of 
order transfer, which resulted in Datagram Transport Layer Security (DTLS), as 
described in RFC 4347 [3].

Protocol Introduction

TLS has been designed for reliable transport protocols, that is it expects no lost 
or  reordered messages from the transport  layer,  which not  even has to be 
message-oriented, but can also be a simple byte stream. If it detects that a 
message is lost or out of order, it reasonably assumes an attack and drops the 
connection.  Unfortunately,  this  makes it  impossible to use it  with unreliable 
transport protocols,  with which losses and reordering are very likely.  So the 
main problem is to tolerate unreliability and not creating any security issues 
while doing so.

Base Protocol

The DTLS protocol has, like TLS, a base protocol called Record Layer, and four 
subprotocols on top of it. These are the Handshake, the ChangeCipherSpec and 
the Alert protocol as well as the application data protocol.

Record Layer

The header of the  Record Layer consists of  the  Content Type,  that is which 
subprotocol  it  is  carrying,  the  Protocol  Version and  its  Length.  It  retains 
message limits, in case the transport layer does not. Each Record message has 
a unique sequence number, which is increased with every message sent. TLS 



maintains  this  number  implicit  on  both  peers,  that  is  it  is  not  transmitted. 
Nonetheless,  it  is  used  for  the  calculation  of  the  Hashed  Message 
Authentication  Code  (HMAC),  which  is  used  to  ensure  the  integrity  of  the 
message. If a received message does not have the expected sequence number, 
the hash cannot be verifed and the connection is dropped. This behavior is 
counterproductive  with  unreliable  transport  protocols,  so  the  DTLS  Record 
Header has been extended. The sequence number is part of the header, as well 
as the epoch,  which is  increased with every successful  handshake and also 
used for the hash calculation. The extended DTLS Record Header is illustrated 
in Figure 1.

Figure 1: DTLS Record Header

Handshake Protocol

To set up a new connection and negotiate the security parameters, like cipher 
suite, hash algorithms or compression,  the  Handshake protocol is  used. The 
client initiates the handshake by sending a ClientHello message to the server. 
This  message  contains  the  supported  cipher  suites,  hash  and  compression 
algorithms and a random number. The server is supposed to respond with a 
ServerHello,  which  contains  the  cipher  suite  and  algorithms the  server  has 
chosen  from the  ones  the  client  ofered  and  also  a  random number.  Both 
random numbers  will  be  used,  among  other  data,  to  calculate  the  master 
secret. The server may continue with a ServerCertifcate with its certifcates to 
authenticate  itself,  if  necessary.  In  that  case  it  can  also  send  a 
CertifcateRequest, to provoke the client to authenticate, too. For some cipher 
suites additional data is necessary for the calculation of the secret, which can 
be send with a ServerKeyExchange. Since the last three messages mentioned 
are optional, a ServerHelloDone indicates when no more messages follow from 
the server.

This  part  of  the  handshake  is  a  problem  with  connection-less  transport 
protocols,  because there is no transport connection setup necessary and an 
attacker could just send many ClientHellos to a server. This could be used for a 
Denial  of  Service  (DOS)  attack  against  the  server,  which  will  start  a  new 
session,  thus  allocating  resources,  for  every  ClientHello,  or  against  another 
victim  by  redirecting  the  much  larger  response  of  the  server  to  it,  thus 
multiplying  the  attacker's  bandwidth.  To  prevent  this  issue,  DTLS  uses  an 
additional handshake message, called HelloVerifyRequest. It is sent in response 
to the ClientHello and contains a so-called cookie of arbitrary data, preferably 
signed.  The  server  will  only  send  this  message  without  allocating  any 
resources.  The  client  then  has  to  repeat  its  ClientHello with  the  cookie 
attached. If the cookie can be verifed, hence the signature, the server knows 
that the client has not used a faked address, and since the HelloVerifyRequest 



is small and has to be answered before the server sends any more data, no 
DOS attacks are possible anymore. After this verifcation the handshake will be 
continued as before, with the server fnally sending the ServerHello.

After  the  ServerHelloDone,  the  client  has  to  send  its  certifcates  with  a 
ClientCertifcate if  the server requested authentication. This is followed by a 
ClientKeyExchange, which contains its public key or other cryptographic data, 
depending on  the  cipher  suite  used.  Also  depending  on  the  cipher  suite  is 
whether a CertifcateVerify to verify a signed certifcate has to be sent. At this 
point both peers have enough information to calculate the master secret. Thus, 
the  client  sends  the  ChangeCipherSpec,  to  announce  that  the  negotiated 
parameters and the secret will be used from now on. Its last message is the 
Finished, which contains a hash calculated over the entire handshake and is 
encrypted already. The server concludes the handshake by also sending the 
ChangeCipherSpec and  Finished.  The  complete  handshake  sequence  is 
depicted in Figure 2.

Figure 2: DTLS Handshake with Flights

Since  the  handshake  cannot  be  completed  if  one  or  more  messages  are 
missing, it has to be performed reliable. With an unreliable transport, DTLS has 
to ensure the reliability of  handshake messages itself.  Therefore, it  needs a 
timer to retransmit lost messages. For increased efciency, DTLS does not use 
a timer for every message, but for bundles of messages, called fights. A fight 
contains all messages before the sending side changes (compare Figure 2). For 
every fight sent a timer is started, and if there is no response until the timer 
expires, the entire fight will be retransmitted. 

Another  issue  is  that  most  protocols  other  than TCP are  message-oriented, 
while  TCP  is  bytestream-oriented.  TCP  does  not  care  how  large  a  Record 
message  is,  it  will  just  split  it  in  as  many  parts  as  necessary  to  send  it. 



Message-oriented protocols on the other hand, may not have a mechanism to 
fragment and reassemble messages. The consequence is that only messages 
smaller  than  the  current  Path-MTU  can  be  sent.  The  Path  Maximum 
Transmission Unit is the smallest common message size every host on the path 
between the peers can handle. Especially the messages containing certifcates 
may be larger than the current Path-MTU. To still  be able to  transfer these 
messages,  DTLS  has  to  provide  its  own  fragmentation  mechanism.  This  is 
achieved  by  extending  the  Handshake  Message  Header.  With  TLS  every 
handshake message starts with its  Message Type and its  Length. For DTLS a 
Fragment Offset and Fragment Length entry is added.

DTLS also has to deal with reordered messages, which can likely occur with 
unreliable  transports.  To  handle  handshake  messages  arriving  in  the  wrong 
order,  the  Handshake  Message  Header  is  further  extended  and  a  Message 
Sequence Number is added. This allows to restore the correct sequence of the 
handshake. The new header is shown in Figure 3.

Figure 3: DTLS Handshake Message Header

Alert Protocol

The Alert protocol is used to notify warnings or errors that might have occurred, 
for example if a certifcate could not be verifed. While errors are always fatal 
and  lead  to  the  immediate  shutdown  of  the  connection,  warnings  are 
informational  and  the  connection  can remain  established.  With  DTLS  some 
errors  are  just  sent  as  warnings,  like  BadRecordMAC,  RecordOverflow or 
DecryptionFailed, because otherwise the connection-less protocol would allow 
an attacker to shut down the connection with an arbitrary message to one of 
the peers. Additionally, alert messages are also used to gracefully shut down 
the connection. When a peer has nothing to send anymore, it should send a 
CloseNotify alert. The connection is closed after both peers have sent it.

Replay Check

An attacker is unable to modify messages, due to the encryption and integrity 
checks. However, with a connection-less transport protocol he could just copy a 
valid  message  and  resend  it  to  the  receiver.  If  he  has  knowledge  of  the 
application protocol used, he may be able to reissue a command in this way. To 
prevent that, DTLS has its own Replay Check. A window is maintained in which 
Record Sequence Numbers of received messages are valid, if not already seen. 
Every other message will be dropped.



Heartbeat Extension

When using connection-less transport protocols, there is no acknowledgement 
of received data, so when the receiver does not return any data, a sender does 
not know if it is still alive. If the used application protocol does not provide any 
mechanism to check if the peer still  exists and responds, the only way is to 
initiate a handshake for renegotiation, which is quite inconvenient.

The Heartbeat Extension for TLS and DTLS [4] adds two new messages to the 
protocol,  the  HeartbeatRequest and  the  HeartbeatResponse.  These  can  be 
used  to  realize  a  keep-alive  functionality,  because  every  received 
HeartbeatRequest has to be responded with a HeartbeatResponse immediately. 
Both messages consist of their type, length, an arbitrary payload and padding, 
as shown in Figure 4. The response to a request must always return the same 
payload but no padding. This allows to realize a Path-MTU Discovery by sending 
requests with  increasing padding until there is no answer anymore, because 
one of the hosts on the path cannot handle the message size any more. The 
smaller  response  ensures  that  only  one  direction  of  the  path  is  measured, 
because the routing and so the Path-MTU can be diferent on each way.

Figure 4: Heartbeat Message Scheme

For backward compatibility, the  Heartbeat Extension can only be used if both 
peers support it, otherwise the connection may be dropped with an unexpected 
message alert. This is achieved by adding so called  Hello Extensions to the 
ClientHello and  ServerHello, respectively. If both peers indicate their support, 
the extension can be used.  Since  mobile  clients  usually  want  to avoid  any 
unnecessary trafc to save battery power, the Hello Extension can also be used 
to indicate if the host is actually willing to respond to Heartbeats or does not 
want to receive any requests at all, but preserves the possibility to send them 
itself.

SCTP-aware DTLS

DTLS can basically be used with SCTP since it  has no requirements for the 
transport  protocol,  other than the transport  itself.  However,  DTLS may drop 
messages  in  some  scenarios,  which  is  not  appropriate  with  the  reliable 
transport  of  SCTP and features  like retransmission timers  would be existing 
twice. Hence, some adaptations [5] are necessary to make DTLS SCTP-aware, 
as described in RFC 6083 [6].

Being  developed  for  unreliable  transport  protocols,  the  default  behavior  of 
DTLS  is  discarding  unexpected  messages.  This  may  occur  when  messages 



arrive after a renegotiation has been performed and thus the key material has 
been  changed.  These messages  cannot  be  decrypted  anymore  and  will  be 
dropped.  SCTP  supports  multiple  streams,  that  is  multiple  unidirectional 
channels within the same connection. This can be used to separate logically 
independent data from each other,  for  example retrieving each object  of  a 
website (text, images, videos, etc.) on a diferent stream. So the order of the 
messages has to be maintained per stream only, not across multiple streams. If 
a message is lost, only the messages of the same stream have to be delayed 
until the retransmission arrives, while without multi-streaming all messages will 
be  delayed.  Therefore,  data  across  multiple  streams  is  likely  to  arrive 
reordered. Additionally, SCTP supports unordered delivery within a stream as 
well. To prevent message loss, it has to be ensured that the data transmission 
is stopped and every outstanding message has been received before initiating 
a  renegotiation.  The  Extension  PR-SCTP  to  send  messages  unreliable  is 
supported  without  any  modifcations,  since  DTLS  is  particularly  made  for 
unreliable protocols.

Since  SCTP  provides  reliable  transfer,  DTLS'  reliability  mechanisms  for  the 
handshake are not necessary anymore and the timer and fragmentation must 
not be used. The replay check is  done by SCTP as well,  so this  is also not 
necessary.

DTLS Implementation of OpenSSL

A prototype implementation of DTLS for OpenSSL was developed while it was 
specifed and standardized in 2005 [7]. It is part of the ofcial releases since 
version 0.9.8, but did not receive much attention until the release of version 
1.0.0, which already contained many bug fxes [8]. However, the architecture 
and  API  of  OpenSSL  was  designed  for  TLS  and  its  TCP  connections,  which 
caused some difculties and limitations when implementing DTLS.

The  architecture  of  OpenSSL  is  basically  split  into  three parts,  the  context 
(CTX), the session (SSL) and basic I/O functionality (BIO). The context knows 
which protocol, that is SSL version 2 or 3, TLS or DTLS, is used, holds a session 
cache and other global parameters.  For every new session an SSL object is 
created from the context  and uses these parameters.  The SSL  object  itself 
holds the session state and a BIO object for I/O abstraction. The BIO object can 
communicate with a networking socket or another BIO object, creating a so-
called chain of BIO objects. A possible combination could be a bufering BIO 
before the actual socket BIO.

When initializing the context with a protocol,  an SSL_METHOD object will  be 
assigned to  it.  This  object  is  specifc  to  the  protocol  and  contains  a set  of 
functions for every action, like sending, receiving, handshaking and so on. Each 
SSL object created for a new connection with this context will map the generic 
API to these functions. Hence, the DTLS implementation was added with a DTLS 
specifc SSL_METHOD and corresponding functions. This can already be used 
with the existing BIO objects, which are TCP specifc though. To use another 
protocol, like UDP or SCTP, new BIO objects aware of their characteristics had 
to be created.



Since  this  architecture  has  been  created  for  TCP  based  connections,  the 
relation between SSL and socket BIO objects is always one-to-one. This results 
in the limitation that transport protocol connections can also only be one-to-
one, although SCTP can be used and UDP is only used one-to-many style, that 
is handling multiple connections per socket. The one-to-many style cannot be 
realized with OpenSSL without elaborate modifcations to its architecture and 
API, because multiple SSL objects would have to share a single BIO object. As a 
workaround, SCTP can only be used one-to-one style, like TCP, and UDP has to 
use connected sockets to simulate a one-to-one behavior.

OpenSSL DTLS API

The API used for DTLS is mostly the same as for TLS, because of the mapping 
of generic functions to protocol specifc ones. Some additional functions are still  
necessary,  because  of  the  new  BIO  objects  and  the  timer  handling  for 
handshake  messages.  The  generic  concept  of  the  API  is  described  in  the 
following sections. Examples of applications using DTLS are available at [9].

Prerequisites

Every program using OpenSSL has to start with initializing the library by calling

   SSL_load_error_strings(); /* readable error messages */
   SSL_library_init(); /* initialize library */

before any other action can be done. The DTLS specifc context can be created 
thereafter, from which SSL objects for each connection can be derived. The 
context is diferent for the client and server, and several parameters, including 
certifcates and keys, have to be set:

   /***** SERVER *****/
   ctx = SSL_CTX_new(DTLSv1_server_method());

   /***** CLIENT *****/
   ctx = SSL_CTX_new(DTLSv1_client_method());

   /*****  BOTH  *****/
   /* Load certificates and key */
   SSL_CTX_use_certificate_chain_file(ctx, "cert.pem");
   SSL_CTX_use_PrivateKey_file(ctx, "key.pem", SSL_FILETYPE_PEM);

   /* Server: Client has to authenticate */
   /* Client: verify server's certificate */
   SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, verify_cert);

   SSL_CTX_set_cookie_generate_cb(ctx, generate_cookie);
   SSL_CTX_set_cookie_verify_cb(ctx, verify_cookie);

Note  that  three  callback  functions  have  been  used,  that  is  verify_cert(), 
generate_cookie() and verify_cookie(). The frst function, verify_cert(), is called 



every  time a  certifcate  has  been  received.  This  function  has to  verify  the 
certifcate and returns 1 if trusted or 0 otherwise. Usually the program will print 
certifcate details and ask the user if he trusts it, or maintains a database of 
known certifcates. In case the certifcate is not trusted, the handshake and 
therefore  the  connection  setup  will  fail.  The  other  callback  functions, 
generate_cookie() and verify_cookie(), are used for the cookie handling. When 
a cookie has to be generated for a  HelloVerifyRequest, the generate_cookie() 
function is called and after receiving a cookie attached to a  ClientHello the 
verify_cookie()  function.  The content  is  arbitrary,  but  for security  reasons it 
should contain the client's address, a timestamp and should be signed. The 
signatures of the callback functions are as follows:

   /* Certificate verification. Returns 1 if trusted, else 0 */
   int verify_cert(int ok, X509_STORE_CTX *ctx);

   /* Generate cookie. Returns 1 on success, 0 otherwise */
   int generate_cookie(SSL *ssl, unsigned char *cookie,
                       unsigned int *cookie_len);

   /* Verify cookie. Returns 1 on success, 0 otherwise */
   int verify_cookie(SSL *ssl, unsigned char *cookie,
                     unsigned int cookie_len);

Connection setup

The server needs a socket for awaiting incoming connections. For this socket a 
BIO object has to be created, which can then be used with an SSL object to 
respond to connection attempts. To prevent DOS attacks, the server should use 
the  HelloVerifyRequest to verify the client's address.  Since this  is unique to 
DTLS, there are newly added functions to realize this. 

   int fd = socket(AF_INET6, SOCK_DGRAM, 0);
   bind(fd, &server_addr, sizeof(struct sockaddr_in6));

   while(1) {
      BIO *bio = BIO_new_dgram(fd, BIO_NOCLOSE);

      SSL *ssl = SSL_new(ctx);
      SSL_set_bio(ssl, bio, bio);

      /* Enable cookie exchange */
      SSL_set_options(ssl, SSL_OP_COOKIE_EXCHANGE);

      /* Wait for incoming connections */
      while (!DTLSv1_listen(ssl, &client_addr));

      /* Handle client connection */
      ...
   }



At frst, BIO_new_dgram() is used instead of BIO_new() to create a UDP specifc 
BIO. Then a new SSL object is created using the previously set up context, to 
which  the  BIO  object  is  assigned.  The  cookie  exchange  is  not  enabled  by 
default and has to be enabled with the corresponding option. The new function 
DTLSv1_listen()  waits  for  incoming  ClientHellos on  the  listening  socket, 
responds  with  a  HelloVerifyRequest and  returns  0,  which  indicates  that  no 
client  has  been  verifed  yet  and  it  needs  to  be  called  again  to  continue 
listening. When the client repeats its  ClientHello with a valid cookie attached, 
the function will return 1 and the sockaddr structure of the verifed client. The 
sockaddr  structure  can  be  used  to  create  a  new socket,  connected  to  this 
client, which is used to replace the listening socket in the BIO object. Hereafter 
the SSL object can be used for this connection, preferably in a new thread, 
while new BIO and SSL objects have to be created for the listening socket, to 
continue listening.

   /* Handle client connection */
   int client_fd = socket(AF_INET6, SOCK_DGRAM, 0);
   bind(client_fd, &server_addr, sizeof(struct sockaddr_in6));
   connect(client_fd, &client_addr, sizeof(struct sockaddr_in6));

   /* Set new fd and set BIO to connected */
   BIO *cbio = SSL_get_rbio(ssl);
   BIO_set_fd(cbio, client_fd, BIO_NOCLOSE);
   BIO_ctrl(cbio, BIO_CTRL_DGRAM_SET_CONNECTED, 0, &client_addr);

   /* Finish handshake */
   SSL_accept(ssl);

Since the handshake has only been performed until the repeated  ClientHello, 
SSL_accept() to complete the handshake still has to be called, before sending 
and receiving data.

Connecting the client to a server is rather straightforward. A socket connected 
to the server has to be created and put into a corresponding BIO object, which 
itself is used by an SSL object.

   int fd = socket(AF_INET6, SOCK_DGRAM, 0);
   connect(fd, &server_addr, sizeof(struct sockaddr_in6));

   BIO *bio = BIO_new_dgram(fd, BIO_NOCLOSE);
   BIO_ctrl(cbio, BIO_CTRL_DGRAM_SET_CONNECTED, 0, &server_addr);

   SSL *ssl = SSL_new(ctx);
   SSL_set_bio(ssl, bio, bio);

   /* Perform handshake */
   SSL_connect(ssl);



Sending & Receiving

Sending and receiving with DTLS is just the same as with TLS. The functions 
used are SSL_write() for sending and SSL_read() for receiving. Both return the 
number of bytes sent and received, respectively. In case -1 is returned, an error 
handling is necessary, because there are several reasons why this could have 
happened. The function SSL_get_error() determines if and what kind of error 
occurred. This is the same for sending and receiving, and should be done after 
every SSL_read() and SSL_write() call.

Return value Description

SSL_ERROR_NONE No error.

SSL_ERROR_ZERO_RETURN Transport connection closed.

SSL_ERROR_WANT_READ 
SSL_ERROR_WANT_WRITE

Reading/Writing had to be interrupted, just try 
again.

SSL_ERROR_WANT_CONNECT, 
SSL_ERROR_WANT_ACCEPT

Connecting/Accepting had to be interrupted, 
just try again.

SSL_ERROR_WANT_X509_LOOKUP Interrupt for certifcate lookup. Try again.

SSL_ERROR_SYSCALL Socket error.

SSL_ERROR_SSL SSL protocol error, connection failed.

The return value SSL_ERROR_SYSCALL indicates that a problem occurred while 
calling recvfrom() or sendto() internally. The kind of error can be determined 
with the  errno variable.  Usually,  a  socket  error  is  fatal  and the  connection 
cannot  be  continued,  for  example  after  ENOMEM,  that  is  no  memory  left. 
However, some errors, like ECONNRESET (“Connection reset by peer”), may be 
ignored. This error only occurs when the peer closed its port, thus dropped a 
packet  and  notifes  this  with  an  Internet  Control  Message  Protocol  (ICMP) 
message. Such a message can easily be faked by an attacker to shut down the 
connection.  Instead,  the  Heartbeat  Extension should  be  used  to  check  the 
peer's availability.

Timer and Socket Timeout Handling

To  set  socket  timeouts,  the  function  BIO_ctrl()  should  be  used  with  the 
corresponding BIO object:

   struct timeval timeout;
   timeout.tv_sec = 5;
   timeout.tv_usec = 0;
   BIO_ctrl(bio, BIO_CTRL_DGRAM_SET_RECV_TIMEOUT, 0, &timeout);

Whenever  a  socket  timeout  occurs,  that  is  EAGAIN  or  EWOULDBLOCK  is 
returned, the SSL_read() or SSL_write() call will return SSL_ERROR_WANT_READ 
or SSL_ERROR_WANT_WRITE. So to determine if this error was really caused by 
a socket timeout, the BIO object has to be asked:



   int len = SSL_read(ssl, buffer, sizeof(buffer));
   switch (SSL_get_error(ssl, len)) {
      ...
      case SSL_ERROR_WANT_READ:
         /* Handle socket timeouts */
         if (BIO_ctrl(bio, BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP,
                      0, NULL)) {
            num_timeouts++;
         }
         break;
      ...
   }

Besides  the  handling  of  socket  timeouts,  DTLS  has  also  handshake  timers 
which  have  to  be  considered.  When  socket  timeouts  are  set,  DTLS  will 
automatically  adjust them while handshaking if  they expire too late,  so the 
blocking  call  will  return  and  retransmissions  can  be  performed.  After  the 
handshake  has  been  done,  the  socket  timeouts  are  reset  to  the  previous 
values.  However,  this  does not  work with non-blocking sockets,  because no 
DTLS function will be called if there is no incoming or outgoing trafc. So when 
using non-blocking calls with select(), its timeout has to be set accordingly with 
the function DTLSv1_get_timeout(),  which will  return the time until  the next 
timer expires, if any is running. In that case, DTLSv1_handle_timeout() must be 
called to perform retransmissions:

   struct timeval timeout;
   DTLSv1_get_timeout(ssl, &timeout);
   int num = select(FD_SETSIZE, &rsocks, NULL, NULL, &timeout) {
      /* Handle timeouts */
      if (num == 0) {
         DTLSv1_handle_timeout(ssl);
      }
      ...
   }

For simplicity, no socket timeouts should be set before the initial handshake is 
done with SSL_connect() and SSL_accept(), because if the socket timeouts 
expire earlier than the handshake timeouts, additional error handling will be 
necessary to resume the handshake in that case.

SCTP specific API

To use DTLS with SCTP, a corresponding BIO object is necessary. An SCTP-aware 
BIO object can be created with the function BIO_dgram_sctp_new(). Since SCTP 
supports one-to-one style connections, DTLSv1_listen() must not be used, and 
the connection handling can just be done by creating a new socket for each 
incoming  connection  with  accept()  and  calling  SSL_accept()  afterwards  to 
perform the initial handshake. To make use of SCTP's additional features, that is 
notifcations and streams, the API of the BIO object has been extended.



SCTP  supports  notifcations,  which  are  informational  messages  sent  by  the 
protocol  stack via the socket read call.  They cannot be passed to the DTLS 
layer  for  decryption  because  they  are  neither  encrypted  nor  a  valid  DTLS 
message  and  thus  would  be  discarded.  To  retrieve  notifcations  anyway,  a 
callback function can be registered with the BIO object, which is then called for 
every incoming notifcation.

   void notifications(BIO *bio, void *context, void *buffer) {
      SSL *ssl = (SSL*) context;
      ...
   }

   void *context = (void*) ssl;
   BIO_dgram_sctp_notification_cb(bio, &notifications, context);

The context is an arbitrary pointer which will be passed with every call. This 
can be used to pass the SSL object which the occurring notifcation belongs to, 
for example.

To make use of multi-streaming and other features of SCTP, the user needs to 
get and set additional information and the fags passed with a send/receive 
socket call, to read for example which stream has been used for the received 
message and to set the stream on which the next message should be sent. The 
BIO_ctrl() function provides several options for getting and setting appropriate 
structures:

Option Description

BIO_CTRL_DGRAM_SCTP_GET_SNDINFO Get sndinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_SET_SNDINFO Set sndinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_GET_RCVINFO Get rcvinfo for last message received.

BIO_CTRL_DGRAM_SCTP_SET_RCVINFO Set rcvinfo for last message received.

BIO_CTRL_DGRAM_SCTP_GET_PRINFO Get prinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_SET_PRINFO Set prinfo for next messages sent.

The structures used are defned as follows:

   /* Information used for sending */
   struct bio_dgram_sctp_sndinfo
   {
      uint16_t snd_sid;
      uint16_t snd_flags;
      uint32_t snd_ppid;
      uint32_t snd_context;
   };



   /* Information after receiving */
   struct bio_dgram_sctp_rcvinfo
   {
      uint16_t rcv_sid;
      uint16_t rcv_ssn;
      uint16_t rcv_flags;
      uint32_t rcv_ppid;
      uint32_t rcv_tsn;
      uint32_t rcv_cumtsn;
      uint32_t rcv_context;
   };

   /* Configuring PR-SCTP */
   struct bio_dgram_sctp_prinfo
   {
      uint16_t pr_policy;
      uint32_t pr_value;
   };

This examples shows how to use the BIO_ctrl() call and the listed options to 
retrieve the additional information SCTP passes with each received message:

   struct bio_dgram_sctp_rcvinfo rcvinfo;
   BIO_ctrl(bio, BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
            sizeof(struct bio_dgram_sctp_rcvinfo), &rcvinfo);
   printf(“Received message on stream %d.”, rvcinfo.rcv_sid);

Conclusion

The widely deployed TLS works without limitations only with TCP, which is not 
the  preferred  transport  protocol  in  all  scenarios.  To  secure  an  unreliable 
protocol like UDP or one with special features like SCTP, its modifcation DTLS 
can be used. All dependencies to the transport protocol have been removed, so 
DTLS does not require any feature but the transport itself.

OpenSSL contains a DTLS implementation for UDP since release 0.9.8,  with 
major  improvements  since  release  1.0.0.  Heartbeat  and  SCTP  support  is 
available as a patch and is planned to be included in release 1.0.1.

With  the  inclusion  of  DTLS  in  OpenSSL,  it  is  available  on  many  diferent 
platforms  and  even  by  default  on  most  open  source  operating  systems. 
Furthermore, applications that want to make use of DTLS without relying on the 
operating system can already be deployed as a static  build  with the latest 
OpenSSL release. This even allows to use DTLS on restricted mobile platforms 
like Apple's iOS and Google's Android.
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